Epidemiological and Population Structure Studies in *Neisseria meningitidis*
Summary

• Life cycle of *N. meningitidis*, typing scheme and disease-associated genotypes.

• Meningococcal disease in the UK and the investigation into meningococcal carriage after the introduction of the serogroup C conjugate vaccine (MCC).

• Geographical, temporal and vaccine-induced population structure.
Life cycle of *N. meningitidis*

- Acquisition
- Transmission
- Release
- Invasion
- Colonisation
- 'Recovery'
- Disease
Multilocus Sequence Typing (MLST)

Sample isolation and DNA extraction.

PCR / sequencing of 7 loci (housekeeping genes).

Each sequence is assigned an arbitrary allele number

STs used to analyse population structure and assign isolates to clonal complexes.

ST-11: 2 3 4 3 8 4 6
ST-50: 2 3 19 3 8 4 6
ST-52: 7 3 4 3 8 4 6
ST-67: 2 3 4 24 8 4 6
ST-1270: 2 3 4 150 8 4 40

7 numbers from 7 loci form an allelic profile or sequence type (ST):

- abcZ
- adk
- aroE
- fumC
- gdh
- pdhC
- pgm
Invasive potential and phenotypes

England and Wales, 1999: 1664 disease, 2045 carriage isolates

<table>
<thead>
<tr>
<th>Clonal complex</th>
<th>Disease association OR</th>
<th>B</th>
<th>C</th>
<th>W-135</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-8</td>
<td>14.7 [6.8 - 31.9]</td>
<td>11</td>
<td>69</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ST-11</td>
<td>28.7 [20.1 - 41.1]</td>
<td>7</td>
<td>525</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ST-22</td>
<td>0.23 [0.17 - 0.32]</td>
<td>5</td>
<td>0</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>ST-23</td>
<td>0.14 [0.07 - 0.28]</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>ST-32</td>
<td>2.1 [1.5 - 3.0]</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ST-35</td>
<td>0.29 [0.16 - 0.53]</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ST-41/44</td>
<td>1.8 [1.5 - 2.1]</td>
<td>390</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ST-213</td>
<td>0.4 [0.28 - 0.57]</td>
<td>39</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ST-269</td>
<td>4.4 [3.4 - 5.8]</td>
<td>214</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0.28 [0.24 - 0.34]</td>
<td>140</td>
<td>32</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>
1-Meningococcal disease in the UK and the investigation into meningococcal carriage after the introduction of the serogroup C conjugate vaccine (MCC)
Serogroups of Meningococcal Disease Isolates in England and Wales

Data: HPA Meningococcal Reference unit and Centre for Disease Surveillance and Control.
http://www.hpa.org.uk/infections/topics_az/meningo/data_meni_t3a.htm

*Culture +PCR confirmed reports
**Provisional Data
Questions Behind the UK Menincococcal Carriage Study

- Neisseria meningitidis populations are highly diverse and dynamic
- Low prevalence of disease-associated strains

Immunisation with MCC could reduce the carriage of serogroup C disease-associated strains.

1-Capsule replacement
 Emergence of new hypervirulent strains with serogroups other than C (i.e. B, Y, W-135)

2-Herd immunity
 Indirect protection of the unvaccinated individuals
The UK Meningococcal Carriage Study

- Isolation: 16,700
- Genotype: 2,500
- MRU/SMPRL Phenotype
- ST, siaD
- Study databases: MLSTdbNet

Questionnaire: Risk factors for carriage

- Glasgow
- Stockport
- Nottingham
- Oxford
- London
- Plymouth

Bangor

Cardiff
Changes on the Distribution of Serogroup C Clonal Complexes Over Three Years

Year

1999 2000 2001

% of isolates

Unassigned
ST-8 complex/Cluster A4
ST-53 complex
ST-461 complex
ST-41/44 complex/Lineage 3
ST-364 complex
ST-35 complex
ST-334 complex
ST-32 complex/ET-5 complex
ST-269 complex
ST-254 complex
ST-213 complex
ST-1157 complex
ST-11 complex/ET-37 complex
ST-103 complex
Effect of the MCC on Serogroup C Capsule Expression
Conclusions (I)

• The introduction of the MCC vaccine in the UK substantially reduced the prevalence of the disease-causing strains of ST-11 complex among the general population.

• The expression of the capsule among ST-11 complex strains has been significantly reduced, more so than in any other serogroup C associated clonal complexes.

• No vaccine escape variants were detected in this study nor has been any indication of their emergence seven years after the vaccination campaign.

• The reduction on carriage of the ST-11 complex strains is consistent with the observation that herd immunity plays a key role in protecting unvaccinated people and young infants, among whom protection from the vaccine wanes rapidly.
2-Geographical, temporal and vaccine-induced population structure
Aim of the Study

• To detect temporal stratification among meningococcal isolates obtained in three consecutive years following a mass-vaccination campaign with MCC.

• To investigate the geographic structure among bacterial population within a country.

• To investigate the population structure among carried *Neisseria meningitidis* in relation to the boundaries of human communities.
Analyses Implemented

F-Statistics or F_{ST}

- Measures the extent of the genetic differentiation among subpopulations.
 - Ranges from 0 (no differentiation) to 1 (complete differentiation).

Analysis of Molecular Variation (AMOVA)

- ANOVA-like approach which partitions the molecular variance into within and among sub-populations components.
 - Renders a p-value using a permutation test.

Definition of “genetic distance”

- ST identity: 1 if they are the same; 0 if they are different.
Temporal and Geographic Structuring Among carried *Neisseria meningitidis* in the United Kingdom

Temporal Structuring
- 1999-2000: 0.00093
- 1999-2001: 0.00146
- 2000-2001: 0.00025

Geographic Structuring
- Postcode: 0.00942
- Schools: 0.01073
- UK locations: 0.00239
Conclusions (II)

- F_{ST} shows evidence of population structuring between pre and post-vaccine isolates.
- Higher levels of gene flow restriction observed among different schools and postal districts than among different cities around the UK.
Acknowledgements

Sample Collection:

Bangor: D Casey, KT Dunkin, C Roberts, AM Walker.
Cardiff: MR Evans, J Murray, A Paul.
Glasgow: JC Cameron, SC Clarke, S Ahmed.
London: JS Kroll, YK Lau, S Welch.
Nottingham: DAA Ala'aldeen, K Neal, P Marks, D Turner.
Oxford: D Crook, K Cann, D Griffiths, M Clacher, F Colles.
Plymouth: S Harrison, R Cunningham, G Lewendon, R Mathews.

Study Design and Coordination:

MCJ Maiden,
JM Stuart,
JC Cameron,
JM MacLennan.

Isolate Characterisation:

S Gray, SC Clarke, AD Carr,
C Lewis.
AB Ibarz Pavón, R Urwin.

Noel McCarthy

Peter Medawar Building for Pathogen Research
University of Oxford

Daniel Wilson

Department of Mathematics and Statistics
Lancaster University

...And all the students who took part in the study
Mantel Test

• Chi-square test that measures correlation \((r)\) between two inter-related distance matrices of the same rank.

 • The matrices used contain pairwise genetic and geographic distances.
 • \(r\) measures the correlation between genetic and geographic distances.

• Null hypothesis assumes no correlation between the matrices \((r=0)\).

 • High values of \(r\) indicate genetic differences between populations from different locations.

• Significance assessed as the proportion of the permutations that lead to an \(r>0\)
Mantel Test Shows No Correlation Between Genetic and Geographic Distance Either Before of After the Introduction of the MCC

1999
Correlation coefficient = -0.012009

2001
Correlation coefficient = -0.011003
Effects on Capsule Expression by Clonal Complex

- ST-11 complex/ET-37
- ST-213 complex
- ST-269 complex
- ST-35 complex
- ST-41/44 complex/Lin
- ST-53 complex
- ST-8 complex/Cluster
- Unassigned

1999

2000

2001

- SiaD-C/sg-Y
- SiaDc-Non-groupable
- SiaDc-Serogroup C

- ST-11 complex/ET
- ST-213 complex
- ST-254 complex
- ST-269 complex
- ST-32 complex/ET
- ST-35 complex
- ST-41/44 complex/Lin
- ST-8 complex/Cluster
- Unassigned
Disease-associated meningococci genotypes and serogroups

- **Serogroup A**
 - ST-1 complex
 - ST-4 complex
 - ST-5 complex

- **Serogroup C**
 - ST-11 complex
 - ST-8 complex
 - ST-41/44/C

- **Serogroup B**
 - ST-41/44 complex
 - ST-32 complex

- **Serogroup W-135**
 - ST-22 complex
 - ST-11/W-135

- **Serogroup Y**
 - ST-23 complex
Evidence of Genetic Differentiation Between Pre and Post-Vaccine Populations of *Neisseria meningitidis*

ST Frequency
- 1999-2000: 0.00093
- 1999-2001: 0.00146
- 2000-2001: 0.00025

Nucleotide differences
- 1999-2000: 0.00133
- 1999-2001: 0.00179
- 2000-2001: 0.00026

Allelic mismatch
- 1999-2000: 0.00141
- 1999-2001: 0.00220
- 2000-2001: 0.00014
Genetic Differentiation Among *Neisseria meningitidis* Collected from Locations, Postal Districts and Schools around the United Kingdom

ST Frequency

- Postcode: 0.00942, 0.00239
- Schools: 0.01073
- UK locations: 0.01116, 0.01033

Nucleotide differences

- Postcode: 0.01116
- Schools: 0.01365, 0.00323

Allelic mismatch

- Postcode: 0.01033
- Schools: 0.01262, 0.00322